
Numerical implementation of radiation transport Alex Ziampras

Disclaimer: There’s quite a bit of algebra in this document, that I mostly skipped to focus on the
immediately usable results. I’ve tried my best to keep my steps clear, and I encourage you to go through
the math once. Nevertheless, if something seems to appear “out of thin air”, feel free to contact me.

Introduction
Consider gas with mass density ρ, temperature T , thermal energy density e = ρcVT , velocity u. The gas
cools by coupling to the background radiation field with radiation energy density E, and heats up due to
irradiation from a central star with luminosity L⋆. Within the flux-limited diffusion closure (FLD), which
assumes an isotropic radiation field, the thermal evolution of the gas then follows:

∂e
∂t
+ u · ∇e = −γe∇ · u − κPρc

(
aRT 4 − E

)
+ Qirr, (1)

∂E
∂t
+ ∇ · Frad = κPρc

(
aRT 4 − E

)
, Frad = −

λc
κRρ
∇E. (2)

Here, κR and κP are the Rosseland and Planck mean opacities, c the speed of light, λ the flux limiter, and
Qirr the irradiation heating term. We ignore the gray terms and focus on the e–E coupling.

Contents
1 Flux-limited diffusion 2

1.1 Discretization . 2
1.1.1 Bonus: improved fluxes . 3
1.1.2 Bonus: geometrical factors . 3

1.2 Radiation–thermal energy coupling . 4
1.3 Matrix form . 4
1.4 Boundary conditions . 5
1.5 Numerical solvers . 5

1.5.1 Bonus: preconditioning . 6

2 Irradiation 7
2.1 Discretization . 7
2.2 Updating the thermal energy . 7

2.2.1 Bonus: frequency-dependent irradiation . 8

Numerical implementation of radiation transport Alex Ziampras

1 Flux-limited diffusion
First, we’ll describe how to solve Eqs. (1) & (2) with respect to e and E. Due to the very strict timestep
limitation coming from the tern ∇ ·Frad, we’ll approach this problem with an implicit method. This allows
us to maintain numerical stability regardless of timestep, but is much more computationally expensive.

1.1 Discretization
In the finite-volume framework, the evolved quantity is not what is defined at a point within a cell, but is
rather its volume average within the cell. In other words, if q is a quantity defined within a cell, then we
are solving for

q̃ =
1
∆V

∫
Vcell

q dV. (3)

We can take advantage of this in Eq. (2). Integrating over a cell volume we get:

∂

∂t

∫
Vcell

E dV +
∫

Vcell

∇ · Frad dV =
∫

Vcell

κPρc
(
aRT 4 − E

)
dV ⇒

∆V
∂Ẽrad

∂t
+

∮
S cell

Frad · ds ≈ ∆V κ̃Pρ̃c
(
aRT̃ 4 − Ẽrad

)
,

(4)

where we’ve used the divergence theorem to convert the volume in-
tegral to an integral over the cell surface S cell. For simplicity, from
now on we’ll drop the tilde (∼) from all quantities and assume they
refer to their volume-averaged counterpart. Since we’re solving
the set of equations (1) & (2) implicitly, we also assume that T
and E are defined at t + ∆t, denoted with a (′). We then have:

ρcV
T ′ − T
∆t

= −κPρc
[
aR(T ′)4 − E′

]
+ Qirr, (5)

E′ − E
∆t

+
1
∆V

∑
S cell

F ′rad · ∆s = κPρc
[
aR(T ′)4 − E′

]
. (6)

q

qi+1

n=2

qi−1

n=1

qj+1

n=4

qj−1

n=3

�
i

j

k

q
i+ 1

2
q
i− 1

2

q
j+ 1

2

q
j− 1

2

∆xi

Fig. 1: Set of grid cells using
our notation. The k direction
extends out of the page.

We now focus on the flux term,
∑
F ′rad · ∆s. Discretizing this term is now much easier, as it’s simply:

∑
F ′rad · ∆s = −

N∑
n=1

λc
κRρ

∂E′

∂xn
x̂n · ∆sn, (7)

summing over all N = 6 interfaces of the cell (see Fig. 1). All that remains is to evaluate D = λc
κRρ

and ∂E
′

∂xn

at their respective cell interfaces. We can do this by defining the Lagrange interpolating polynomial L
between cells i and i ± 1, and evaluating either Li± 1

2
or ∂L
∂xn

∣∣∣∣
i± 1

2

. This gives us:

Di± 1
2
≈

xi±1 − xi± 1
2

xi±1 − xi
Di +

xi± 1
2
− xi

xi±1 − xi
Di±1,

∂E′

∂xn

∣∣∣∣∣
i± 1

2

≈ −
1

xi±1 − xi
E′i +

1
xi±1 − xi

E′i±1. (8)

We can now discretize the flux term, taking into account possible geometrical factors in different
coordinate systems. For brevity, we will write that ∇E′ · x̂d = hd

∂E′
∂xd

, where hn is a geometrical factor
in direction d (e.g., in cylindrical coordinates we have that ∇E′ · φ̂ = 1

R
∂E′
∂φ

, therefore hϕ = 1/R). After
applying Eq. (8) and repackaging everything, we find:

∆t
∆V

∑
F ′rad · ∆s = ME′ + Mi−1E′i−1 + Mi+1E′i+1 + M j−1E′j−1 + M j+1E′j+1 + Mk−1E′k−1 + Mk+1E′k+1, (9)

Numerical implementation of radiation transport Alex Ziampras

where M are coefficients that depend on both physics (D) and the grid. For a direction d ∈ {i, j, k}:

Md±1 = ∓
Dd± 1

2
hd

xd±1 − xd

∆t
∆V
∆sd± 1

2
, M = −

∑
d∈{i, j,k}

(Md−1 + Md+1) .

Note: This is not the final form of these coefficients! We need to include the RHS and boundaries.

We can then write Eq. (6) as:

E′ − E + ME′ +
∑

d∈{i, j,k}

(
Md−1E′d−1 + Md+1E′d+1

)
= κPρc∆t

[
aR(T ′)4 − E′

]
. (10)

Before compactifying this equation more, we’ll need to work on that (T ′)4 on the RHS.

1.1.1 Bonus: improved fluxes

Above, we used Lagrange polynomials to interpolate the radiation fluxes on cell interfaces. This works,
but we can do better. We can demand that the flux exiting cell i from the right is equal to that entering
cell i + 1 from the left. In other words:

Fi+ 1
2
= FR

i = FL
i+1 ⇒ −Di

E′
i+ 1

2
− E′i

xi+ 1
2
− xi

= −Di+1

E′i+1 − E′
i+ 1

2

xi+1 − xi+ 1
2

⇒ Di

E′
i+ 1

2
− E′i

∆xi
= Di+1

E′i+1 − E′
i+ 1

2

∆xi+1
, (11)

where ∆xi = xi+ 1
2
− xi− 1

2
is the cell width along direction i. Solving for E′

i+ 1
2

gives

E′
i+ 1

2
=

DiE′i/∆xi + Di+1E′i+1/∆xi+1

Di/∆xi + Di+1/∆xi+1
. (12)

and finally substituting E′
i+ 1

2
into Fi+ 1

2
yields

Fi± 1
2
= ∓

2hi

∆xi/Di + ∆xi±1/Di±1

(
E′i±1 − E′i

)
= ∓D̃i±1hi

E′i±1 − E′i
∆xi

. (13)

The off-diagonal coefficients can then be written as

Md±1 = −
D̃d±1hd

∆xi

∆t
∆V
∆sd± 1

2
,

D̃d±1

∆xi
= 2
[
∆xi

Di
+
∆xi±1

Di±1

]−1

. (14)

In doing so, we have achieved flux conservation and avoided having to interpolate any quantity onto the
cell interface.

1.1.2 Bonus: geometrical factors

To avoid confusion, here’s a list of the geometrical factors h for the three typical geometries:
Cartesian: hx = 1, hy = 1, hz = 1.
Cylindrical: hR = 1, hϕ = 1

R , hz = 1.
Spherical: hr = 1, hθ = 1

r , hϕ = 1
r sin θ .

Numerical implementation of radiation transport Alex Ziampras

1.2 Radiation–thermal energy coupling

A common approach to expressing (T ′)4 in terms of T and T ′ is to linearize it as

(T ′)4 = (T + ∆T)4 ≈ T 4 + 4T 3∆T = T 4 + 4T 3(T ′ − T)⇒ (T ′)4 ≈ 4T 3T ′ − 3T 4. (15)

Then, substitute Eq. (15) into Eq. (5), and obtain:

T ′ − T = −
κPc∆t

cV

[
aR

(
4T 3T ′ − 3T 4

)
− E′
]
+

Qirr∆t
ρcV

. (16)

To make our life easier we can define two dimensionless quantities:

Y = κPρc∆t, X =
aRT 4

e
Y =

aRT 3κPc∆t
cV

. (17)

These quantities relate the distance traveled by a photon within ∆t to its mean free path (Y), and the ratio
of radiative to thermal energy density (X). Equation (16) then becomes

T ′ =
1 + 3X
1 + 4X

T +
Y

1 + 4X
E′

ρcV
+

1
1 + 4X

Qirr∆t
ρcV

(18)

We will use this to update T → T ′ later, once we have computed E′. For now, we plug it back into
Eq. (10) and get:(

1 +
Y

1 + 4X

)
E′ + ME′ +

∑
d∈{i, j,k}

(
Md−1E′d−1 + Md+1E′d+1

)
= E +

Y
1 + 4X

aRT 4 +
4X

1 + 4X
Qirr∆t. (19)

This is starting to take shape. Next, we’ll work on simplifying the equation before solving it.

1.3 Matrix form

If we express all quantities (e.g., E′) as vectors spanning the entire grid, the coefficients M represent the
radiation matrix M (see Fig. 2). We can then write Eq. (19) as

M · E′ = B, (20)

where B is the RHS, which depends on the current state:

B = E +
Y

1 + 4X
aRT 4 +

4X
1 + 4X

Qirr∆t (21)

and the matrix elements of M are given by:

Md±1 = ∓
Dd± 1

2
hd

xd±1 − xd

∆t
∆V
∆sd± 1

2
or −

D̃d±1hd

∆xi

∆t
∆V
∆sd± 1

2
,

M = 1 +
Y

1 + 4X
−
∑

d∈{i, j,k}

(Md−1 + Md+1) .
(22)

The last step before solving the above system is taking care of boundary conditions.

Numerical implementation of radiation transport Alex Ziampras

i+1i-1 j+1 k+1

j+1

k+1

i+1

i-1

M E ′ B

· =

Fig. 2: Example of the linear system of
equations M · E′ = B. The matrix M is
banded, with diagonal elements M and
off-diagonals Md±1. Shaded boxes de-
note all cells involved in computing the
value of E′ at a given point. Note that
the off-diagonal bands are shorter than
the diagonal, which will be addressed in
the form of boundary conditions. In the
case of the example cell shown, this is
needed for cells j−1 and k−1. The gap
between the blue and orange columns
is imax cells wide, and the orange–green
gap imax × jmax cells wide.

1.4 Boundary conditions
A clue to how we’ll handle boundaries is in Fig. 2: for the example cell shown, the matrix element Mk−1

is missing. In reality, it’s been absorbed into the diagonal and/or the RHS.
Consider for example the case of a zero-gradient boundary. In the case of the above example, this implies
E′k−1 = E′. We can then modify Eq. (19) as follows to include this information:

M → M + Mk−1, then Mk−1 = 0. (23)

Similarly, a fixed-value boundary condition E′k−1 = E0 would require the following modification:

B→ B − Mk−1E0, then Mk−1 = 0. (24)

Finally, a periodic boundary would require that E′k−1 = E′kmax
, which is handled by default as long as

periodicity (or an MPI communication) is enforced before solving the equation system.

More sophisticated boundary conditions such as fixed-gradient or constant flux are of course possi-
ble, following the same logic as above. In general, if the target value/gradient is known a priori the
information is passed to the RHS, while if it’s relative to E′ it is absorbed by the diagonal. The corre-
sponding non-diagonal term is then eliminated.

Now that we have fully defined the above system, we can move on to solving it. Finally, once we’ve
solved the system, we can update the thermal energy via Eq. (18), as e′ = ρcVT ′.

1.5 Numerical solvers
Naively, one could use a typical linear algebra solver that aims to invert the matrix M (e.g., Gauss–Seidel
elimination). The problem with this approach is the size of the matrix, Ncells × Ncells. With a typical grid
containing anywhere between 104–1012 cells, this is impossible from both a time and memory standpoint.

We can instead note that the matrix is almost empty: only the 7 bands highlighted above (the diag-
onal, and a non-diagonal per side per orthogonal direction) are non-zero. The matrix M is called sparse,
with density ∼ 7/Ncells ≪ 1. This makes it a prime candidate for sparse matrix solvers. The approach here
is iterative, with each iteration asymptotically approaching the exact solution. The solution is “reached”
when a convergence criterion is met (e.g., once the residual

∑
grid
|M · E′ − B|) is sufficiently small).

An entry-level (i.e., rather suboptimal but functional and easy to implement) method used to solve

Numerical implementation of radiation transport Alex Ziampras

sparse matrices is via Successive Over-Relaxation (SOR). By marking E′ at a given iteration with
superscript “p”, E′|p+1 is given by:

E′|p+1
= (1 − ω) E′|p −

ω

M

 ∑
d∈{i, j,k}

(
Md−1 E′d−1

∣∣∣p + Md+1 E′d+1

∣∣∣p) − B

 , (25)

where 1 < ω < 2 is the relaxation parameter and E′|p=0 = E is the initial guess. Since the method relies
heavily on using an optimal value for ω, solving this system repeatedly (i.e., for many timesteps) would
ideally require computing ω adaptively (e.g, adjusting ω slightly after every successful solution based on
the number of iterations needed).
A “quirk” of the SOR method is that, since we update E′ while sweeping through the grid, we need to be
careful not to include terms E′n

∣∣∣p+1
on the RHS. This can be achieved by doing two sweeps, hopping over

every other grid cell in each sweep. In a 2D example, where the grid can be visualized as a checkerboard,
this implies sweeping over all white cells first, then over all the black ones.

While SOR is quite easy to implement, it is far from the fastest. There exists an entire family of
gradient descent solvers, specifically designed for solving problems with massive sparse matrices as
quickly as possible. A popular example is the BiConjugate Gradient—Stabilized (BiCGSTAB) algorithm.

Note that some of these algorithms (e.g., the Conjugate Gradient method) assume M to be symmet-
ric, which is generally not the case. For the purpose of stability, it is advised to drop this assumption.

Another note: A good initial guess can really help reduce the number of iterations needed for con-
vergence. A typical starting point is the solution of the previous timestep, or E = aRT 4 for step #1.

Another another note: The scipy module for python contains a set of sparse matrix solvers that
can solve Eq. (20) efficiently, as long as you provide M and B as discussed.

1.5.1 Bonus: preconditioning

A good initial guess and an efficient solver are both very useful, but there is a third, sometimes significantly
more important ingredient to quick convergence (or sometimes convergence at all): preconditioning the
linear system. The idea is to manipulate M, E′, and/or B in a way that favors the numerical scheme used
to solve the system.

Here, we’ll describe the simplest form of “Jacobi preconditioning”, where we simply rescale the diagonal
of M to have a magnitude of 1. This is particularly useful in the optically thin limit (Y → 1), where the
diagonal is nearly zero and the system is prone to both roundoff errors and hundreds or thousands of
iterations to convergence.

Having defined M fully, we now define the diagonal matrix P = PI with Pi =
√
|Mi|. Since it’s

diagonal, its inverse satisfies P−1
i = 1/Pi. We will now apply P to Eq. (20):

P
−1

M P
−1

PE′ = P
−1

B⇒ m · ε′ = b, (26)

where ε′i = PiE′i , bi = Bi/Pi, mi = Mi/P2
i = sgn(Mi), and md±1 = Md±1/(PiPd±1). After solving this

modified system for ε′ (with the same methods as above), we can recover E′i = ε
′
i/Pi.

Note: it is recommended to handle the boundary conditions before applying the preconditioner to
avoid complications.

Numerical implementation of radiation transport Alex Ziampras

2 Irradiation
We now shift our focus to a different problem: solving for the irradiation heating due to a central star.
Here, we need to trace rays of starlight along the radial direction r:

Qirr = −∇ · (Firrr̂), Firr =
L⋆

4πr2 e−τ, τ =

∫ r

R⋆
κρdr, (27)

where τ is the optical depth and κ is the absorption opacity. The strategy here is to first compute τ
throughout the domain (as this requires ray-tracing), evaluate Qirr, and finally update e.

The first step is easy (but expensive): starting from τi=0 = 0 (or τ0, if the effect of a feature not in-
cluded in the domain such as an inner disk must be captured), we iterate over r and set τi+1 = τi + κiρi∆ri.

Note: in the case that we have multiple processors in the r direction, this operation can be parallelized!
Each processor can compute its local δτp(r) =

∫ r

rp
min
κρ∆r, and then all processors can communicate to

trade “offsets” such that τp(r) = δτp(r) +
∑
n<p
δτn(rn

max).

2.1 Discretization
Similar to FLD, we’ll use the divergence theorem and write:∫

Vcell

Qirr dV = −
∫

Vcell

∇ · (Firrr̂) dV ⇒ Qirr =
1
∆V

[
F i− 1

2
irr ∆si− 1

2
− F i+ 1

2
irr ∆si+ 1

2

]
. (28)

Normally we would then follow an approach similar to Eq. (8), where we interpolate Firr on the respective
cell face. However, we can avoid this if we assume a spherical geometry (most commonly used for this
problem, since the rays follow the grid naturally). Since the surface element is ∆s = r2∆Ω, with ∆Ω
constant along a ray, we have:

Qirr =
1
∆V

 L⋆
4πr2

i− 1
2

e
−τi− 1

2 r2
i− 1

2
∆Ω −

L⋆
4πr2

i+ 1
2

e
−τi+ 1

2 r2
i+ 1

2
∆Ω

 = L⋆
4π∆V

∆Ω
[
e
−τi− 1

2 − e
−τi+ 1

2

]
. (29)

Finally, note that τi+ 1
2
= τi− 1

2
+ κρ∆r. Therefore:

Qirr =
1
∆V

L⋆
4πr2

i− 1
2

∆si− 1
2
e
−τi− 1

2

[
1 − e−κρ∆r

]
=

F i− 1
2

irr

∆V
∆si− 1

2

[
1 − e−κρ∆r

]
. (30)

Interpolating τ on the left cell interface is actually not necessary, as τ is defined on cell interfaces by
virtue of it being an integral of κρ over a cell width. In other words, the τi we defined above is actually τi− 1

2
.

Note: when implementing the above numerically, consider using the function expm1() (included in
math.h in C, or equivalent). This returns ex−1 as a whole, rather than exposing us to numerical roundoff
errors for very small τ, where e−τ → 1.

2.2 Updating the thermal energy
A simple update method would be a first-order accurate Euler step in an operator-split approach:

∂e
∂t
= Qirr ⇒ e′ = e + Qirr∆t, (31)

Numerical implementation of radiation transport Alex Ziampras

assuming that all other terms (advection, radiation transport) have been handled already. The problem with
this approach when used in conjuction with cooling (e.g., FLD) is that gas is sequentially heated/cooled
depending on the order of operations. This makes computing an equilibrium state artificially harder. A
solution is to couple irradiation heating and FLD into one step. As long as Qirr does not depend on T , we
can simply compute Qirr and add it to the RHS in Eq. (21) and to the temperature update step in Eq. (18).

Note: if κ is a function of T , Qirr can technically not be incorporated to the FLD problem above,
as it would need to be computed “implicitly” (i.e., using T ′). Nevertheless, the error due to incorporating
it anyway is preferable and much smaller than the temperature difference due to successive heating and
cooling.

2.2.1 Bonus: frequency-dependent irradiation

We can easily extend the above irradiation method to include a more sophisticated, frequency-dependent
opacity component. For a frequency ν, we have that

Fνirr =
Lν⋆

4πr2 e−τ
ν

, τν = κν
∫ r

R⋆
ρdr = κνσ(r), (32)

where σ(r) is the column of material within radius r. We can then use ray-tracing to compute σ rather
than τ, and use the appropriate κν and Lν⋆ for each frequency bin. The total flux is then Firr =

∑
ν Fνirr.

Of course, for consistency, our choices should satisfy that

L⋆ =
∑
ν

Lν⋆, κ =

∫
κνBν(T⋆)dν∫
Bν(T⋆)dν

= κP(T⋆), (33)

where Bν(T) is the black body radiance (i.e., the opacity can be replaced with a Planck mean opacity
when integrated over all frequencies). Funny enough, frequency-dependent irradiation is sometimes more
appropriate as κν typically doesn’t depend on T , and it’s more accurate.

References
Levermore & Pomraning, 1981 • Kley, 1989 • Chiang & Goldreich, 1997 • Commercon et al., 2011 •
Kuiper et al., 2013 • Kolb et al., 2013 • Robinson et al., 2024

https://ui.adsabs.harvard.edu/abs/1981ApJ...248..321L/abstract
https://ui.adsabs.harvard.edu/abs/1989A%26A...208...98K/abstract
https://ui.adsabs.harvard.edu/abs/1997ApJ...490..368C/abstract
https://ui.adsabs.harvard.edu/abs/2011A%26A...529A..35C/abstract
https://ui.adsabs.harvard.edu/abs/2013A%26A...555A...7K/abstract
https://ui.adsabs.harvard.edu/abs/2013A%26A...559A..80K/abstract
https://ui.adsabs.harvard.edu/abs/2024MNRAS.529.1524R/abstract

	Flux-limited diffusion
	Discretization
	Bonus: improved fluxes
	Bonus: geometrical factors

	Radiation–thermal energy coupling
	Matrix form
	Boundary conditions
	Numerical solvers
	Bonus: preconditioning

	Irradiation
	Discretization
	Updating the thermal energy
	Bonus: frequency-dependent irradiation

