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Basics
Gas with mass density ρ, pressure P, temperature T , velocity u⃗ = (ur, uθ, uϕ) or u⃗ = (uR, uϕ, uz).
Assume ideal equation of state: P = kB

µmH
ρT = R

µ
ρT . Then, the internal energy density is e = ρcVT = P

γ−1 .

Euler equations of hydrodynamics:

∂ρ

∂t
+ u⃗ · ∇ρ = −ρ(∇ · u⃗) (1)

∂u⃗
∂t
+ (u⃗ · ∇)u⃗ = −

1
ρ
∇P − ∇Φ⋆ (2)

∂e
∂t
+ u⃗ · ∇e = −γe(∇ · u⃗) (3)

The equation of state defines the sound speed cs:

cs =

√
γ
∂P
∂ρ

ideal
=⇒ cs =

√
γ

P
ρ
=

√
γ
RT
µ
∝
√

T

Isothermal gas: γ = 1→ csiso := cs/γ ⇒ P = cs
2
isoρ.

Gravitational potential of the star: Φ⋆ = −GM⋆
r = − GM⋆√

R2+z2 . Keplerian rotation defines the Keplerian angu-
lar frequency ΩK =

2π
TK

:

T 2
K

R3 =
4π2

GM⋆
⇒ ΩK =

√
GM⋆

R3

Vertical stratification: assuming vertically isothermal gas (∂T/∂z = 0), hydrostatic equilibrium defines a
pressure scale height H:

(2)
u=0
=⇒

∂P
∂z
= −ρ

∂Φ⋆
∂z

z≪R
=⇒ ρ(R, z) ≈ ρmid(R) exp

(
−

z2

2H2

)
, H :=

csiso

ΩK

More accurately, the pressure-supported equilibrium state if ρmid(R) ∝ (R/R0)p, T ∝ (R/R0)q is exactly:

ρ(R, z) = ρmid(R) exp
[

1
h2

(
R

√
R2 + z2

− 1
)]
, uϕ(R, z) = RΩK

[
1 + (p + q)h2 + q

(
1 −

R
√

R2 + z2

)]1/2

.

Disks are generally geometrically thin (H ≪ R). Define the aspect ratio h := H/R ≈ 0.03–0.1.

Now, define the surface density Σ(R) =
∫ ∞
−∞
ρ(R, z)dz and the vertically integrated pressure P2D(R) = cs

2
isoΣ

and energy density e2D(R) = P2D
γ−1 . The equations can be integrated vertically:

dΣ
dt
= −Σ

(
∇ · u⃗

) du⃗
dt
= −

1
Σ
∇P2D − ∇Φ⋆

de2D

dt
= −γe2D

(
∇ · u⃗

)
,

d
dt
=
∂

∂t
+

(
u⃗ · ∇

)
. (4)

This also means that Σ ≈
√

2πρmidH.

For simplicity, from now on assume power laws such that Σ = Σ0

(
R
R0

)s
, T = T0

(
R
R0

)q
, P2D = P0

(
R
R0

)s+q
.

The radial profile of the azimuthal velocity uϕ(R) is defined in hydrodynamic equilibrium:

(4)
uR=0
=⇒

u2
ϕ

R
=

1
Σ

∂P2D

∂R
+
∂Φ⋆
∂R

⇒ uϕ = uK

√
1 + (s + q)h2 ≈ 0.997 uK, uK = RΩK
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• Simple irradiation model for a passive (externally heated) disk: q ≈ −1/2, or q = −3/7 (see CG97).

• Typical density profiles motivated by observations: s ≈ −1. Since p = s − (q + 3)/2, p ≈ −2.25.

Accretion & viscosity

The disk is slowly falling onto the star (accretion)—define the accretion rate Ṁ in steady state:

(4)
∂
∂t=0
=⇒ ΣRuR = const. ⇒ Ṁ := −2πΣRuR

To drive accretion we need angular momentum transport radially outwards. This can be modeled as a kine-

matic viscosity ν. In a steady state, Ṁ ≈ 3πνΣ ⇒ uR(R) = −
3
2
ν

R
.

SS73 viscosity model: ν = αcsH, α ≪ 1. Note that α can vary with R or z!

Dust dynamics

Solid material particles (affectionately called “dust”) coexist with the gas (Mdust ∼ 0.01Mgas in ISM). Because
the dust does not feel the gas pressure, it orbits at uK and thus feels a headwind uK − uϕ and drifts radially
towards regions of higher pressure (typically inwards).

The coupling between the dust and the gas is given by the stopping time ts, or Stokes number St = tsΩK. In the
Epstein regime (up to ∼cm size):

St =
√
π

8
adρ̃d

ρH
z=0
=⇒ Stmid =

π

2
adρ̃d

Σ
,

where ad is the grain radius and ρ̃d ∼ 1 g/cm3 is the dust material density. Small (large) St means the dust is
well (poorly) coupled to the gas. The dust drifts radially with a speed

uR,d ≈
1

1 + St2

(
uR,g +

St
ΣΩK

dP
dR

)
=

uR,g

1 + St2 +
1

St + St−1ηuK, η =
dlog P
dlog R

h2

which is fastest when St ∼ 1, and typically much faster than the disk lifetime (so pressure traps are needed to
save mm-sized dust from falling onto the star)!

In the absence of turbulence, the dust settles to the midplane of the disk over a timescale tsettle = St−1Ω−1
K . If

the dust is kicked up vertically via turbulence, it settles to an equilibrium profile given by the balance between
vertical settling and turbulent diffusion with ν̄ = αcsH (∂α/∂z = 0):

ρd(R, z) ≈ ρd,mid(R) exp
[
−

St − Stmid

α
−

z2

2H2

]
, St = Stmid

ρmid

ρ
≈ Stmid exp

(
z2

2H2

)
.

Notice the degeneracy between α and St (always α/St)!
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Radiative cooling
The disk cools over a cooling timescale tcool = βΩ

−1
K , where β(ρ,T, . . . ) is a dimensionless cooling parameter.

To capture this locally (i.e., missing diffusive processes!), introduce a source term in Eq. (3):

∂e
∂t
= Qcool = −

∆e
tcool
= −

e − e0

tcool
⇒

∂T
∂t
≈ −

T − T0

β
ΩK,

where T0 is a floor temperature (e.g., TISM ≈ 3 K) or a reference profile. Examples of such profiles are disks in
thermal equilibrium (e.g., an irradiation–emission balance) but are in principle heavily parameter-dependent
or even arbitrary. Note that this really describes a relaxation mechanism, as for T < T0 it heats the disk to T0.

• In viscous α disks, Qvisc ≈
9
4νρΩ

2
K. Then thermal balance gives an equilibrium temperature Teq:

∂e
∂t
= Qvisc + Qcool = 0⇒ Teq =

T0

1 − kαβ
, k :=

9
4
√
γ(γ − 1) ≈ 1–2

• In case of an arbitrary cooling function, β can be approximated as:

∂e
∂t
= Qcool ⇒

e
tcool
∼ |Qcool| ⇒ tcool ≈

e
|Qcool|

⇒ β ≈
e
|Qcool|

ΩK

The disk can cool via thermal emission: gas exchanges heat with the (much more efficiently-cooling) dust,
which then couples to the radiation field Erad. Assuming an isotropic radiative flux F⃗rad (flux-limited diffusion
closure, or “FLD”), the thermal- and radiation energies evolve as

∂Erad

∂t
= −∇ · F⃗rad + Qrad,

∂e
∂t
= −Qrad, F⃗rad = −

λc
ρκR
∇Erad, Qrad = κPρ

(
aRT 4 − Erad

)
,

where κR, κP are the Rosseland and Planck mean opacities, respectively, and λ is a flux limiter that handles
the transition between the optically thick (λ → 1/3, diffusion limit) and optically thin (F⃗rad → cErad, free-
streaming limit) regimes. Many recipes for λ exist. A representative cooling timescale is:

β ≈ βthick + βthin ≈
ΩK

η

(
H2 +

l2
rad

3

)
, η =

16σSBT 3

3κRρ2cV
, lrad =

1
κPρ
,

Where κR and κP are Rosseland and Planck mean opacities, and we assumed that:

1. Gas–dust thermal coupling is much faster than β so that Tg ≈ Td (not true for very low ρd).

2. Small perturbations from equilibrium so Erad ≈ aRT 4
0 (not true in general).

3. The characteristic length scale for radiative diffusion in the optically thick limit is ∼H (debatable).

4. The same length scale in the optically thin limit is the photon mean free path ∼lrad (this is okay).

5. Cooling is dominated by tiny grains (ad ∼ µm), perfectly coupled to the gas (St ≪ 1).

Radiation is often numerically handled with β cooling (cheap, does not capture diffusion), or FLD (costly,
does not capture shadows, works best in the opt. thick limit), or Monte Carlo techniques (very costly, works
best in opt. thin limit). More sophisticated methods exist (M1, short characteristics, etc.).
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Miscellaneous stuff

Let Σ ∝ Rs, T ∝ Rq, ν = αcsH, then Q ∝ Re where. . .

Q e Reminder
Σ s
T q
ΩK −3/2 Kepler’s law
uK −1/2 = RΩK

csiso, cs q/2 ∝
√

T
H q+3

2 = csiso/ΩK

h q+1
2 = H/R

ρmid s − q+3
2 ∝ Σ/H

P p + q ∝ ρT
P2D s + q ∝ ΣT
ν q + 3/2 ∝ csH, α = ct.
Ṁ s + q + 3/2 ∝ νΣ

Handy conversion table between T -related quantities.

T H h csiso

T - µGM⋆
R

H2

R3
µGM⋆
R

h2

R
µ

R
cs

2
iso

H
√

R

µGM⋆

√
TR3 - h R csiso/ΩK

h
√

R

µGM⋆

√
TR H/R - csiso/uK

csiso

√
R/µ
√

T HΩK h uK -

turbulent
heating

stellar irradiation
vertical
diffusion

surface layers

in-plane diffusion

surface
cooling

dustsublimationfront

dust trap,snowline

dustgrowth
dustsettling

z

R

Sketch of dust (left) and thermal (right) processes in a protoplanetary disk, viewed edge-on.
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